metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentacarbonyl- $1\kappa^2 C$, $2\kappa^3 C$ -[(diphenylphosphoryl)diphenylphosphane- $1\kappa P$]- μ -ethane-1,2-dithiolato-1: $2\kappa^4 S$,S':S,S'diiron(I)(Fe—Fe)

Xu-Feng Liu* and Xiao-Yong Yu

Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China Correspondence e-mail: nkxfliu@yahoo.com.cn

Received 7 October 2011; accepted 12 October 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.059; data-to-parameter ratio = 18.8.

The dinuclear title compound, $[Fe_2(C_2H_4S_2)(C_{24}H_{20}OP_2)-(CO)_5]$ or $(\mu$ -SCH₂CH₂S- μ)Fe₂(CO)₅[Ph₂PP(O)Ph₂], contains a butterfly-shaped Fe₂S₂ core in which the Fe···Fe separation is 2.5275 (6) Å. One of the Fe atoms is also coordinated to three carbonyl ligands and the other to two carbonyl ligands and one phosphane ligand [Ph₂PP(O)Ph₂]. Both Fe-atom geometries could be described as grossly distorted octahedral and the Ph₂PP(O)Ph₂ ligand lies *trans* to the Fe···Fe link.

Related literature

For more details about diiron dithiolate complexes, see: Song et al. (2005); Wang et al. (2009); Yin et al. (2011).

Experimental

Crystal data $[Fe_2(C_2H_4S_2)(C_{24}H_{20}OP_2)(CO)_5]$ $M_r = 730.26$ a = 13.865 (4) Å Mo $K\alpha$ radiation b = 15.398 (4) Å $\mu = 1.24 \text{ mm}^{-1}$ c = 14.459(5) Å T = 113 K $\beta = 98.357 \ (4)^{\circ}$ $0.20 \times 0.18 \times 0.10 \; \mathrm{mm}$ V = 3054.1 (16) Å³ Data collection Rigaku Saturn724 CCD 31351 measured reflections diffractometer 7281 independent reflections Absorption correction: multi-scan 6102 reflections with $I > 2\sigma(I)$ (CrystalClear; Rigaku/MSC, $R_{\rm int} = 0.039$ 2005) $T_{\min} = 0.790, \ T_{\max} = 0.886$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.026$ 388 parameters $wR(F^2) = 0.059$ H-atom parameters constrained

Z = 4

Table 1Selected bond lengths (Å).

S = 1.06

7281 reflections

Monoclinic, $P2_1/n$

Fe1-C2	1.7855 (18)	Fe2-C4	1.7733 (17)
Fe1-C1	1.7981 (17)	Fe2-C5	1.7742 (17)
Fe1-C3	1.8006 (18)	Fe2-P1	2.2426 (7)
Fe1-S1	2.2484 (6)	Fe2-S1	2.2495 (7)
Fe1-S2	2.2495 (8)	Fe2-S2	2.2530 (7)

 $\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e } \text{\AA}^{-3}$

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

This work was supported by the Ningbo petrochemical application-oriented base projects (Jd080109 and Jd090110).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6442).

References

Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, L. C., Yang, Z. Y., Bian, H. Z., Liu, Y., Wang, H. T., Liu, X. F. & Hu, Q. M. (2005). Organometallics, 24, 6126–6135.

Wang, N., Wang, M., Liu, J., Jin, K., Chen, L. & Sun, L. (2009). *Inorg. Chem.* 48, 11551–11558.

Yin, B. S., Li, T. B. & Yang, M. S. (2011). J. Coord. Chem. 64, 2066–2074.

Acta Cryst. (2011). E67, m1552 [doi:10.1107/81600536811042139]

Pentacarbonyl- $1\kappa^2 C$, $2\kappa^3 C$ -[(diphenylphosphoryl)diphenylphosphane- $1\kappa P$]- μ -ethane-1,2-dithiolato-1: $2\kappa^4 S$,S':S,S'-diiron(I)(*Fe-Fe*)

X.-F. Liu and X.-Y. Yu

Comment

Diiron dithiolate complexes have received much attention in recent years due to their structures close to the active site of [FeFe]-hydrogenases (Song *et al.* (2005), Wang *et al.* (2009), Yin *et al.* (2011)). In continuation of our work in this area, the title complex, (I), was synthesized and its structure was determined by X-ray crstallography.

As shown in Fig. 1, the title complex contains five carbonyls and one $Ph_2PP(O)Ph_2$ ligands. The diiron ethanedithiolate cluster consists of two fused five-membered rings. The $Ph_2PP(O)Ph_2$ ligands occupies an axial position of the square-pyramidal geometry of the Fe atom.

Experimental

The title complex was prepared from $(\mu$ -SCH₂CH₂S- μ)Fe₂(CO)₆ and 1,2-bis(diphenylphosphino)cyclopentane in the presence of Me₃NO. Colourless prisms were grown from slow evaporation of dichloromethane and hexane solution at room temperature.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The crystal packing for (I).

Pentacarbonyl- $1\kappa^2 C_{,2}\kappa^3 C_{-}$ [(diphenylphosphoryl)diphenylphosphane- $1\kappa P$]- μ -ethane-1,2-dithiolato- $1:2\kappa^4 S, S':S, S'$ -diiron(I)(Fe—Fe)

Crystal data

[Fe₂(C₂H₄S₂)(C₂₄H₂₀OP₂)(CO)₅] $M_r = 730.26$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.865 (4) Åb = 15.398 (4) Å c = 14.459 (5) Å $\beta = 98.357 \ (4)^{\circ}$ $V = 3054.1 (16) \text{ Å}^3$ Z = 4

Data collection

Rigaku Saturn724 CCD diffractometer	7281 independent reflections
Radiation source: rotating anode	6102 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.039$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 1.9^\circ$
ω and ϕ scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005)	$k = -17 \rightarrow 20$
$T_{\min} = 0.790, \ T_{\max} = 0.886$	$l = -19 \rightarrow 19$
31351 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.059$ S = 1.067281 reflections 388 parameters

0 restraints

F(000) = 1488 $D_{\rm x} = 1.588 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 11006 reflections $\theta = 1.4 - 27.9^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$ *T* = 113 K Prism, colorless $0.20\times0.18\times0.10~mm$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.024P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	1.261528 (16)	0.058771 (14)	0.331352 (16)	0.01557 (6)
Fe2	1.133418 (15)	0.174298 (14)	0.288051 (14)	0.01275 (6)
P1	0.99707 (3)	0.24364 (3)	0.31226 (3)	0.01291 (9)
P2	0.86096 (3)	0.16331 (3)	0.27704 (3)	0.01404 (9)
S1	1.18853 (3)	0.13327 (3)	0.43559 (3)	0.01697 (9)
S2	1.10474 (3)	0.03046 (2)	0.27533 (3)	0.01596 (9)
01	1.30120 (9)	-0.10606 (7)	0.43282 (8)	0.0300 (3)
02	1.43873 (9)	0.15892 (8)	0.39375 (10)	0.0411 (4)
O3	1.32473 (9)	0.01325 (8)	0.15188 (9)	0.0366 (3)
O4	1.26144 (9)	0.32544 (8)	0.29575 (9)	0.0321 (3)
05	1.12828 (9)	0.17617 (8)	0.08534 (8)	0.0298 (3)
O6	0.86136 (7)	0.09157 (6)	0.34670 (7)	0.0177 (2)
C1	1.28842 (11)	-0.04173 (11)	0.39306 (11)	0.0209 (4)
C2	1.36981 (12)	0.11973 (11)	0.36834 (13)	0.0250 (4)
C3	1.29927 (12)	0.03076 (10)	0.22113 (12)	0.0232 (4)
C4	1.20985 (12)	0.26713 (10)	0.29551 (11)	0.0193 (3)
C5	1.12641 (11)	0.17650 (10)	0.16457 (11)	0.0185 (3)
C6	1.09760 (11)	0.05588 (10)	0.46439 (11)	0.0209 (4)
H6A	1.1266	0.0200	0.5182	0.025*
H6B	1.0418	0.0881	0.4833	0.025*
C7	1.06081 (12)	-0.00340 (10)	0.38252 (11)	0.0195 (3)
H7A	0.9886	-0.0031	0.3724	0.023*
H7B	1.0827	-0.0636	0.3979	0.023*
C8	0.99500 (11)	0.27904 (10)	0.43317 (10)	0.0167 (3)
С9	1.05975 (13)	0.34539 (11)	0.46564 (12)	0.0259 (4)
H9	1.1029	0.3676	0.4260	0.031*
C10	1.06217 (14)	0.37937 (12)	0.55452 (12)	0.0328 (4)
H10	1.1068	0.4244	0.5756	0.039*
C11	0.99951 (13)	0.34765 (12)	0.61251 (12)	0.0310 (4)
H11	1.0001	0.3716	0.6731	0.037*
C12	0.93619 (13)	0.28118 (12)	0.58215 (12)	0.0303 (4)
H12	0.8940	0.2589	0.6226	0.036*
C13	0.93332 (11)	0.24635 (11)	0.49297 (11)	0.0209 (4)

H13	0.8895	0.2004	0.4729	0.025*
C14	0.96328 (11)	0.34554 (9)	0.24976 (11)	0.0151 (3)
C15	1.00002 (11)	0.36534 (10)	0.16773 (11)	0.0186 (3)
H15	1.0464	0.3279	0.1462	0.022*
C16	0.96935 (12)	0.43952 (10)	0.11709 (12)	0.0247 (4)
H16	0.9938	0.4517	0.0604	0.030*
C17	0.90373 (12)	0.49556 (11)	0.14854 (12)	0.0258 (4)
H17	0.8830	0.5462	0.1137	0.031*
C18	0.86815 (12)	0.47762 (11)	0.23126 (12)	0.0254 (4)
H18	0.8233	0.5163	0.2535	0.031*
C19	0.89793 (11)	0.40335 (10)	0.28154 (11)	0.0210 (4)
H19	0.8735	0.3916	0.3384	0.025*
C20	0.86646 (11)	0.12448 (10)	0.16014 (10)	0.0167 (3)
C21	0.85652 (12)	0.03529 (10)	0.14617 (11)	0.0235 (4)
H21	0.8466	-0.0013	0.1968	0.028*
C22	0.86095 (14)	-0.00041 (12)	0.05905 (12)	0.0327 (4)
H22	0.8525	-0.0612	0.0498	0.039*
C23	0.87764 (13)	0.05197 (12)	-0.01452 (12)	0.0308 (4)
H23	0.8817	0.0272	-0.0740	0.037*
C24	0.88851 (12)	0.14079 (12)	-0.00128 (12)	0.0257 (4)
H24	0.9003	0.1769	-0.0517	0.031*
C25	0.88221 (11)	0.17707 (11)	0.08506 (11)	0.0214 (4)
H25	0.8886	0.2381	0.0934	0.026*
C26	0.75306 (11)	0.22975 (10)	0.27313 (10)	0.0156 (3)
C27	0.70310 (11)	0.22562 (10)	0.35030 (11)	0.0185 (3)
H27	0.7270	0.1897	0.4020	0.022*
C28	0.61916 (11)	0.27358 (10)	0.35174 (12)	0.0224 (4)
H28	0.5855	0.2704	0.4043	0.027*
C29	0.58382 (12)	0.32645 (10)	0.27659 (12)	0.0252 (4)
H29	0.5263	0.3597	0.2777	0.030*
C30	0.63304 (12)	0.33036 (11)	0.20009 (12)	0.0265 (4)
H30	0.6088	0.3662	0.1485	0.032*
C31	0.71692 (11)	0.28270 (10)	0.19801 (11)	0.0216 (4)
H31	0.7502	0.2860	0.1451	0.026*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.01547 (12)	0.01379 (12)	0.01783 (12)	0.00070 (9)	0.00372 (9)	0.00033 (9)
Fe2	0.01568 (12)	0.01181 (12)	0.01079 (11)	-0.00046 (8)	0.00202 (8)	0.00040 (8)
P1	0.0163 (2)	0.0118 (2)	0.01058 (19)	-0.00003 (15)	0.00202 (15)	0.00057 (15)
P2	0.0160 (2)	0.0135 (2)	0.01251 (19)	-0.00015 (15)	0.00168 (15)	0.00074 (15)
S 1	0.0216 (2)	0.0164 (2)	0.01245 (19)	0.00252 (16)	0.00080 (15)	0.00018 (15)
S2	0.0180 (2)	0.0133 (2)	0.0166 (2)	-0.00165 (15)	0.00262 (15)	-0.00067 (15)
01	0.0367 (7)	0.0210 (7)	0.0332 (7)	0.0076 (5)	0.0084 (6)	0.0089 (6)
O2	0.0249 (7)	0.0301 (8)	0.0672 (11)	-0.0091 (6)	0.0033 (7)	-0.0059 (7)
03	0.0429 (8)	0.0386 (8)	0.0332 (8)	-0.0044 (6)	0.0223 (7)	-0.0082 (6)
O4	0.0317 (7)	0.0245 (7)	0.0378 (8)	-0.0127 (6)	-0.0031 (6)	0.0043 (6)

05	0.0450 (8)	0.0307 (7)	0.0149 (6)	0.0051 (6)	0.0088 (6)	0.0003 (5)
06	0.0208 (6)	0.0153 (6)	0.0174 (6)	-0.0001 (4)	0.0044 (5)	0.0040 (5)
C1	0.0178 (9)	0.0233 (10)	0.0224 (9)	0.0015 (7)	0.0059 (7)	-0.0028 (7)
C2	0.0224 (10)	0.0193 (9)	0.0341 (10)	0.0032 (7)	0.0069 (8)	0.0000 (8)
C3	0.0235 (9)	0.0171 (9)	0.0303 (10)	-0.0024 (7)	0.0083 (8)	0.0009 (7)
C4	0.0229 (9)	0.0187 (9)	0.0152 (8)	0.0021 (7)	-0.0007 (6)	0.0022 (7)
C5	0.0231 (9)	0.0126 (8)	0.0201 (9)	0.0006 (6)	0.0038 (7)	0.0004 (7)
C6	0.0242 (9)	0.0216 (9)	0.0190 (9)	0.0043 (7)	0.0100 (7)	0.0081 (7)
C7	0.0198 (9)	0.0160 (9)	0.0241 (9)	-0.0004 (6)	0.0083 (7)	0.0062 (7)
C8	0.0216 (8)	0.0162 (8)	0.0117 (8)	0.0048 (6)	-0.0002 (6)	-0.0015 (6)
C9	0.0349 (10)	0.0230 (9)	0.0198 (9)	-0.0062 (7)	0.0040 (7)	-0.0029 (7)
C10	0.0465 (12)	0.0260 (10)	0.0241 (10)	-0.0026 (8)	-0.0007 (8)	-0.0094 (8)
C11	0.0419 (12)	0.0354 (11)	0.0147 (9)	0.0088 (9)	0.0010 (8)	-0.0093 (8)
C12	0.0296 (10)	0.0450 (12)	0.0175 (9)	0.0072 (8)	0.0078 (7)	-0.0010 (8)
C13	0.0216 (9)	0.0253 (10)	0.0158 (8)	0.0043 (7)	0.0023 (7)	-0.0009(7)
C14	0.0170 (8)	0.0127 (8)	0.0148 (8)	-0.0018 (6)	-0.0008 (6)	0.0007 (6)
C15	0.0203 (9)	0.0150 (8)	0.0205 (8)	-0.0011 (6)	0.0032 (7)	0.0012 (7)
C16	0.0294 (10)	0.0226 (9)	0.0215 (9)	-0.0025 (7)	0.0014 (7)	0.0079 (7)
C17	0.0284 (10)	0.0150 (9)	0.0312 (10)	0.0007 (7)	-0.0050 (8)	0.0072 (7)
C18	0.0252 (10)	0.0165 (9)	0.0336 (10)	0.0052 (7)	0.0007 (8)	-0.0004 (7)
C19	0.0239 (9)	0.0174 (9)	0.0219 (9)	0.0002 (7)	0.0040 (7)	0.0006 (7)
C20	0.0152 (8)	0.0194 (9)	0.0150 (8)	0.0009 (6)	0.0005 (6)	-0.0022 (6)
C21	0.0318 (10)	0.0195 (9)	0.0186 (9)	0.0011 (7)	0.0021 (7)	-0.0014 (7)
C22	0.0524 (13)	0.0205 (10)	0.0243 (10)	0.0032 (8)	0.0018 (9)	-0.0067 (8)
C23	0.0390 (11)	0.0365 (11)	0.0164 (9)	0.0011 (8)	0.0022 (8)	-0.0093 (8)
C24	0.0270 (10)	0.0329 (11)	0.0170 (9)	-0.0052 (8)	0.0028 (7)	-0.0006 (7)
C25	0.0240 (9)	0.0211 (9)	0.0186 (8)	-0.0040 (7)	0.0012 (7)	-0.0015 (7)
C26	0.0156 (8)	0.0138 (8)	0.0171 (8)	-0.0016 (6)	0.0011 (6)	-0.0003 (6)
C27	0.0192 (8)	0.0180 (9)	0.0179 (8)	-0.0032 (6)	0.0018 (6)	0.0001 (7)
C28	0.0196 (9)	0.0245 (9)	0.0239 (9)	-0.0035 (7)	0.0057 (7)	-0.0054 (7)
C29	0.0183 (9)	0.0213 (9)	0.0348 (10)	0.0037 (7)	0.0002 (7)	-0.0053 (8)
C30	0.0247 (9)	0.0248 (10)	0.0282 (10)	0.0065 (7)	-0.0019 (8)	0.0062 (8)
C31	0.0220 (9)	0.0231 (9)	0.0197 (9)	0.0006 (7)	0.0031 (7)	0.0022 (7)

Geometric parameters (Å, °)

Fe1—C2	1.7855 (18)	C12—C13	1.392 (2)
Fe1—C1	1.7981 (17)	C12—H12	0.9500
Fe1—C3	1.8006 (18)	С13—Н13	0.9500
Fe1—S1	2.2484 (6)	C14—C15	1.391 (2)
Fe1—S2	2.2495 (8)	C14—C19	1.395 (2)
Fe1—Fe2	2.5275 (6)	C15—C16	1.390 (2)
Fe2—C4	1.7733 (17)	С15—Н15	0.9500
Fe2—C5	1.7742 (17)	C16—C17	1.378 (2)
Fe2—P1	2.2426 (7)	С16—Н16	0.9500
Fe2—S1	2.2495 (7)	C17—C18	1.386 (2)
Fe2—S2	2.2530 (7)	С17—Н17	0.9500
P1	1.8353 (16)	C18—C19	1.386 (2)
P1C14	1.8371 (16)	C18—H18	0.9500

P1P2	2 2519 (8)	С19—Н19	0.9500
P2	1 4943 (11)	C20—C21	1 392 (2)
P2-C20	1 8049 (16)	C20—C25	1 397 (2)
P2-C26	1 8066 (16)	C21—C22	1.397(2)
S1-C6	1 8264 (16)	C21—H21	0.9500
82—C7	1 8219 (16)	C^{22} C^{23}	1 381 (2)
01 - C1	1 1461 (19)	C22H22	0.9500
$0^{2}-0^{2}$	1 145 (2)	C^{23} C^{24}	1 386 (2)
03 - 03	1 1414 (19)	C23—H23	0.9500
$O_4 - C_4$	1 1476 (18)	C_{24} C_{25} C_{24} C_{25}	1 382 (2)
05-05	1 1496 (19)	C24—H24	0.9500
C6-C7	1 523 (2)	C25—H25	0.9500
С6—Н6А	0.9900	C26-C31	1 392 (2)
C6—H6B	0.9900	C26—C27	1.392(2)
С7—Н7А	0.9900	C27—C28	1.398(2) 1.381(2)
С7—Н7В	0.9900	С27—С28	0.9500
	1 396 (2)	$C_2 = C_2 $	1.380(2)
C_{0}	1.396 (2)	C28 H28	0.9500
$C_0 = C_{10}$	1.390(2) 1.392(2)	$C_{20} = C_{20}$	1.393(2)
C0 H0	0.0500	C29—C30	1.383(2)
C10 C11	1.391(2)	C_{29} C_{21}	0.9300
	0.0500	C20 U20	1.379 (2)
C_{10} C_{12} C_{12}	0.9300	C30—H30	0.9300
	1.578 (5)	C31—H31	0.9500
	0.9300		
C2—Fe1—C1	101.48 (8)	C10—C9—H9	119.4
C2—Fe1—C3	92.93 (8)	С8—С9—Н9	119.4
Cl—Fel—C3	99.62 (7)	C11—C10—C9	119.85 (17)
C2—Fe1—S1	88.39 (6)	C11—C10—H10	120.1
C1—Fe1—S1	100.81 (5)	С9—С10—Н10	120.1
C3—Fe1—S1	158.84 (6)	C12—C11—C10	119.80 (16)
C2—Fe1—S2	159.44 (5)	C12—C11—H11	120.1
C1—Fe1—S2	97.57 (5)	C10—C11—H11	120.1
C3—Fe1—S2	91.43 (6)	C11—C12—C13	120.83 (16)
S1—Fe1—S2	80.48 (2)	C11—C12—H12	119.6
C2—Fe1—Fe2	103.55 (6)	C13—C12—H12	119.6
C1—Fe1—Fe2	144.71 (5)	C12—C13—C8	119.83 (16)
C3—Fe1—Fe2	103.51 (6)	C12—C13—H13	120.1
S1—Fe1—Fe2	55.831 (19)	С8—С13—Н13	120.1
S2—Fe1—Fe2	55.91 (2)	C15—C14—C19	118.50 (14)
C4—Fe2—C5	89.47 (7)	C15—C14—P1	120.51 (11)
C4—Fe2—P1	96.70 (6)	C19—C14—P1	120.96 (12)
C5—Fe2—P1	102.94 (5)	C16—C15—C14	120.49 (15)
C4—Fe2—S1	92.92 (5)	C16—C15—H15	119.8
C5—Fe2—S1	157.08 (5)	C14—C15—H15	119.8
P1—Fe2—S1	99.41 (2)	C17—C16—C15	120.46 (16)
C4—Fe2—S2	153.40 (5)	С17—С16—Н16	119.8
C5—Fe2—S2	87.33 (5)	C15—C16—H16	119.8
P1—Fe2—S2	109.75 (2)	C16—C17—C18	119.65 (15)
S1—Fe2—S2	80.385 (18)	С16—С17—Н17	120.2

C4—Fe2—Fe1	99.20 (6)	C18—C17—H17	120.2
C5—Fe2—Fe1	101.33 (5)	C19—C18—C17	120.06 (15)
P1—Fe2—Fe1	150.983 (16)	C19—C18—H18	120.0
S1—Fe2—Fe1	55.791 (13)	C17—C18—H18	120.0
S2—Fe2—Fe1	55.79 (2)	C18—C19—C14	120.81 (15)
C8—P1—C14	100.18 (7)	С18—С19—Н19	119.6
C8—P1—Fe2	114.85 (5)	С14—С19—Н19	119.6
C14—P1—Fe2	119.36 (5)	C21—C20—C25	118.86 (14)
C8—P1—P2	104.48 (5)	C21—C20—P2	116.48 (12)
C14—P1—P2	102.27 (5)	C25—C20—P2	124.64 (12)
Fe2—P1—P2	113.64 (3)	C22—C21—C20	120.49 (16)
O6—P2—C20	112.94 (7)	C22—C21—H21	119.8
O6—P2—C26	111.20 (6)	C20-C21-H21	119.8
C20—P2—C26	107.80 (7)	C23—C22—C21	120.24 (17)
O6—P2—P1	109.43 (5)	С23—С22—Н22	119.9
C20—P2—P1	104.22 (5)	C21—C22—H22	119.9
C26—P2—P1	111.04 (6)	C22—C23—C24	119.80 (16)
C6—S1—Fe1	102.29 (6)	С22—С23—Н23	120.1
C6—S1—Fe2	104.41 (6)	С24—С23—Н23	120.1
Fe1—S1—Fe2	68.38 (2)	C25—C24—C23	120.25 (16)
C7—S2—Fe1	100.03 (6)	C25—C24—H24	119.9
C7—S2—Fe2	106.78 (5)	C23—C24—H24	119.9
Fe1—S2—Fe2	68.299 (13)	C24—C25—C20	120.35 (16)
O1—C1—Fe1	176.91 (14)	С24—С25—Н25	119.8
O2—C2—Fe1	178.68 (16)	C20—C25—H25	119.8
O3—C3—Fe1	178.89 (16)	C31—C26—C27	119.05 (14)
O4—C4—Fe2	175.95 (15)	C31—C26—P2	123.97 (12)
O5—C5—Fe2	175.41 (15)	C27—C26—P2	116.97 (12)
C7—C6—S1	112.22 (10)	C28—C27—C26	120.28 (15)
С7—С6—Н6А	109.2	С28—С27—Н27	119.9
S1—C6—H6A	109.2	С26—С27—Н27	119.9
С7—С6—Н6В	109.2	C27—C28—C29	120.26 (15)
S1—C6—H6B	109.2	C27—C28—H28	119.9
H6A—C6—H6B	107.9	C29—C28—H28	119.9
C6—C7—S2	111.97 (10)	C30—C29—C28	119.49 (15)
С6—С7—Н7А	109.2	С30—С29—Н29	120.3
S2—C7—H7A	109.2	С28—С29—Н29	120.3
С6—С7—Н7В	109.2	C31—C30—C29	120.67 (16)
S2—C7—H7B	109.2	C31—C30—H30	119.7
Н7А—С7—Н7В	107.9	С29—С30—Н30	119.7
C9—C8—C13	118.54 (14)	C30—C31—C26	120.25 (15)
C9—C8—P1	116.08 (12)	С30—С31—Н31	119.9
C13—C8—P1	125.37 (12)	С26—С31—Н31	119.9
C10—C9—C8	121.13 (16)		
C2—Fe1—Fe2—C4	8.72 (8)	C5—Fe2—S2—C7	-160.02 (8)
C1—Fe1—Fe2—C4	142.75 (11)	P1—Fe2—S2—C7	-57.23 (6)
C3—Fe1—Fe2—C4	-87.70 (7)	S1—Fe2—S2—C7	39.40 (6)
S1—Fe1—Fe2—C4	87.27 (5)	Fe1—Fe2—S2—C7	94.35 (6)
S2—Fe1—Fe2—C4	-170.14 (5)	C4—Fe2—S2—Fe1	22.18 (11)

C2—Fe1—Fe2—C5	100.03 (8)	C5—Fe2—S2—Fe1	105.64 (5)
C1—Fe1—Fe2—C5	-125.94 (11)	P1—Fe2—S2—Fe1	-151.57 (2)
C3—Fe1—Fe2—C5	3.60 (7)	S1—Fe2—S2—Fe1	-54.945 (14)
S1—Fe1—Fe2—C5	178.57 (5)	C4—Fe2—C5—O5	70.8 (18)
S2—Fe1—Fe2—C5	-78.83 (5)	P1—Fe2—C5—O5	167.5 (18)
C2—Fe1—Fe2—P1	-113.67 (7)	S1—Fe2—C5—O5	-25.5 (19)
C1—Fe1—Fe2—P1	20.35 (10)	S2—Fe2—C5—O5	-82.8 (18)
C3—Fe1—Fe2—P1	149.90 (6)	Fe1—Fe2—C5—O5	-28.5 (18)
S1—Fe1—Fe2—P1	-35.13 (3)	Fe1—S1—C6—C7	-31.06 (12)
S2—Fe1—Fe2—P1	67.46 (4)	Fe2—S1—C6—C7	39.46 (12)
C2—Fe1—Fe2—S1	-78.54 (6)	S1—C6—C7—S2	-8.36 (15)
C1—Fe1—Fe2—S1	55.48 (9)	Fe1—S2—C7—C6	43.88 (11)
C3—Fe1—Fe2—S1	-174.97 (6)	Fe2—S2—C7—C6	-26.31 (12)
S2—Fe1—Fe2—S1	102.59 (2)	C14—P1—C8—C9	-60.76 (14)
C2—Fe1—Fe2—S2	178.86 (6)	Fe2—P1—C8—C9	68.45 (13)
C1—Fe1—Fe2—S2	-47.11 (9)	P2—P1—C8—C9	-166.39 (12)
C3—Fe1—Fe2—S2	82.44 (5)	C14—P1—C8—C13	117.87 (14)
S1—Fe1—Fe2—S2	-102.59 (2)	Fe2—P1—C8—C13	-112.92 (13)
C4—Fe2—P1—C8	-73.60 (8)	P2—P1—C8—C13	12.24 (14)
C5—Fe2—P1—C8	-164.59 (8)	C13—C8—C9—C10	-1.0 (3)
S1—Fe2—P1—C8	20.50 (6)	P1—C8—C9—C10	177.70 (14)
S2—Fe2—P1—C8	103.59 (6)	C8—C9—C10—C11	-0.2 (3)
Fe1—Fe2—P1—C8	49.34 (7)	C9-C10-C11-C12	1.2 (3)
C4—Fe2—P1—C14	45.35 (8)	C10-C11-C12-C13	-1.1 (3)
C5—Fe2—P1—C14	-45.64 (8)	C11—C12—C13—C8	-0.2 (3)
S1—Fe2—P1—C14	139.45 (6)	C9—C8—C13—C12	1.2 (2)
S2—Fe2—P1—C14	-137.46 (6)	P1—C8—C13—C12	-177.41 (13)
Fe1—Fe2—P1—C14	168.29 (6)	C8—P1—C14—C15	147.58 (13)
C4—Fe2—P1—P2	166.17 (5)	Fe2—P1—C14—C15	21.35 (15)
C5—Fe2—P1—P2	75.18 (5)	P2—P1—C14—C15	-105.03 (13)
S1—Fe2—P1—P2	-99.72 (2)	C8—P1—C14—C19	-34.57 (14)
S2—Fe2—P1—P2	-16.64 (3)	Fe2—P1—C14—C19	-160.80 (11)
Fe1—Fe2—P1—P2	-70.88 (4)	P2—P1—C14—C19	72.82 (13)
C8—P1—P2—O6	-56.30 (7)	C19-C14-C15-C16	-2.3 (2)
C14—P1—P2—O6	-160.36 (6)	P1-C14-C15-C16	175.62 (12)
Fe2—P1—P2—O6	69.63 (5)	C14-C15-C16-C17	1.5 (2)
C8—P1—P2—C20	-177.36 (7)	C15-C16-C17-C18	0.0 (3)
C14—P1—P2—C20	78.58 (7)	C16-C17-C18-C19	-0.5 (3)
Fe2—P1—P2—C20	-51.43 (6)	C17-C18-C19-C14	-0.4 (3)
C8—P1—P2—C26	66.83 (7)	C15-C14-C19-C18	1.7 (2)
C14—P1—P2—C26	-37.23 (7)	P1-C14-C19-C18	-176.14 (13)
Fe2—P1—P2—C26	-167.24 (5)	O6—P2—C20—C21	8.73 (15)
C2—Fe1—S1—C6	-151.58 (8)	C26—P2—C20—C21	-114.53 (13)
C1—Fe1—S1—C6	-50.20 (8)	P1—P2—C20—C21	127.42 (12)
C3—Fe1—S1—C6	114.47 (16)	O6—P2—C20—C25	-169.59 (13)
S2—Fe1—S1—C6	45.77 (6)	C26—P2—C20—C25	67.16 (15)
Fe2—Fe1—S1—C6	100.81 (6)	P1—P2—C20—C25	-50.90 (14)
C2—Fe1—S1—Fe2	107.60 (6)	C25—C20—C21—C22	-0.8 (2)
C1—Fe1—S1—Fe2	-151.01 (5)	P2-C20-C21-C22	-179.23 (14)

C3—Fe1—S1—Fe2	13.65 (15)	C20—C21—C22—C23	1.6 (3)
S2—Fe1—S1—Fe2	-55.042 (18)	C21—C22—C23—C24	-1.0 (3)
C4—Fe2—S1—C6	163.12 (7)	C22—C23—C24—C25	-0.3 (3)
C5—Fe2—S1—C6	-101.33 (14)	C23—C24—C25—C20	1.1 (3)
P1—Fe2—S1—C6	65.83 (6)	C21—C20—C25—C24	-0.5 (2)
S2—Fe2—S1—C6	-42.79 (5)	P2-C20-C25-C24	177.80 (13)
Fe1—Fe2—S1—C6	-97.73 (6)	O6—P2—C26—C31	-159.14 (13)
C4—Fe2—S1—Fe1	-99.14 (6)	C20—P2—C26—C31	-34.83 (16)
C5—Fe2—S1—Fe1	-3.59 (13)	P1—P2—C26—C31	78.75 (14)
P1—Fe2—S1—Fe1	163.565 (15)	O6—P2—C26—C27	19.76 (14)
S2—Fe2—S1—Fe1	54.94 (2)	C20—P2—C26—C27	144.07 (12)
C2—Fe1—S2—C7	-107.34 (17)	P1—P2—C26—C27	-102.35 (12)
C1—Fe1—S2—C7	50.53 (7)	C31—C26—C27—C28	-0.1 (2)
C3—Fe1—S2—C7	150.43 (7)	P2-C26-C27-C28	-179.03 (12)
S1—Fe1—S2—C7	-49.23 (5)	C26—C27—C28—C29	-0.1 (2)
Fe2—Fe1—S2—C7	-104.19 (5)	C27—C28—C29—C30	0.3 (2)
C2—Fe1—S2—Fe2	-3.15 (16)	C28—C29—C30—C31	-0.3 (3)
C1—Fe1—S2—Fe2	154.72 (5)	C29—C30—C31—C26	0.1 (3)
C3—Fe1—S2—Fe2	-105.38 (5)	C27—C26—C31—C30	0.1 (2)
S1—Fe1—S2—Fe2	54.960 (17)	P2-C26-C31-C30	178.96 (13)
C4—Fe2—S2—C7	116.53 (12)		

Fig. 2